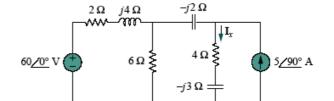

Subject: Electrical Circuit 1st semester, 2015/2016 Sheet No. 3

(1) Use nodal analysis to find V_1 and V_2 in the circuit.

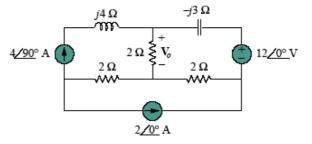


j4Ω

(2) Use nodal analysis to find $i_o(t)$ in the circuit.

(3) Solve for the current I_x in the circuit using nodal analysis.

(4) Solve for i_0 using mesh analysis.


 $10\cos 2t V = 0.25 F \qquad 6 \sin 2t V$

2 H

 4Ω

(5) By using mesh analysis, find I_1 and I_2

(6) Compute V_o in the circuit using mesh analysis.

6Ω 2 H Sheet No. 3 M (7) Solve for $v_0(t)$ in the circuit using the $12\cos 3t \, \mathrm{V}$ 4 sin 2t A 10 V superposition principle. 20 μF 50 cos 2000t V 80 Ω ≥ 100 Ω 40 mH (8) Find i₀ in the circuit using superposition. 2 sin 4000t A 60 Ω 24 V **♦** a (9) For the circuit shown, find the Thevenin ಶ್ವ j10Ω 5/45° A equivalent circuit at terminals a-b -j6Ω = 30 Ω (10) For the circuit shown obtain Thevenin j 10 Ω and Norton equivalent circuits at 60Ω 120<u>∠45°</u> V -o a terminals ab -j5 Ω (11) Obtain the Norton equivalent of the circuit shown at terminals ab ₹2kΩ $4\cos(200t + 30^{\circ}) \text{ V}$ 40 Ω 60 Ω (12) For the circuit shown, find the Norton 3/60° A equivalent circuit at terminals ab b o ∄ j80 Ω −j30 Ω